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ABSTRACT

High resolution windspeed profile measurements are

needed to provide reliable detection of hazardous low-

altitude windshear with an airborne pulse Doppler radar, the

system phase noise in a Doppler weather radar may degrade the

spectrum moment estimation quality and the clutter

cancellation capability which are important in windshear

detection. Also the bias due to weather return Doppler

spectrum skewness may cause large errors in pulse pair

spectral parameter estimates. These effects are analyzed for

the improvement of an airborne Doppler weather radar signal

processing design. This dissertation also presents a method

for the direct measurement of windspeed gradient using low

pulse repitition frequency (PRF) radar. This spatial gradient

is essential in obtaining the windshear hazard index. As an

alternative the modified Prony method is suggested as a

spectrum mode estimator for both the clutter and weather

signal. Estimation of Doppler spectrum modes may provide the

desired windshear hazard information without the need of any

preliminary processing requirement such as clutter filtering.

The results obtained by processing a NASA simulation model

output support consideration of mode identification as one

component of a windshear detection algorithm.
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CHAPTERI

INTRODUCTION

Doppler Weather Radar

Radar is considered to have a great potential as a

remote sensing device, but ordinary radar can not see what

the winds are doing. Only radars using the Doppler frequency

shift can show the wind speed and its direction. These radars

are called Doppler radars. Basically there are two different

types of Doppler radars, i.e., a continuous wave (CW) Doppler

radar and a pulse Doppler radar. The pulse Doppler radar has

an advantage over the CW radar in that the detection

performance is not limited by transmitter leakage or by

signals reflected from nearby clutter or from the radome. The

pulse Doppler radar avoids this difficulty since its receiver

is turned off during transmission whereas the CW radar

receiver is always on. Previous application of pulse Doppler

radar techniques in mapping severe storm reflectivity and

velocity structure has been very successful [1],[2]. Since

Doppler radars have the capability of seeing dynamic

structure of air in low reflectivity conditions [3], these

radars are considered useful in the investigation of dry

weather situations.

A pulse Doppler weather radar transmits a train of

pulses and receives reflected signals as in phase (I) and

quadrature phase (Q) components to differentiate receding or
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approaching targets. Figure 1 shows a simplified Doppler

radar diagram and Figure 2 illustrates the transmitted

waveform and the demodulated return signal. Moving targets in

the turbulent air illuminated by the radar will shift the

transmitted frequency which is well known as the Doppler

effect. This Doppler frequency shift which represents the

time rate of phase change in the demodulated signal is

determined as

2V r

fd = k

where V r is the radial velocity of target particles and _ is

the wavelength of transmitted signal. As seen in Figure 2,

the change in signal phase typically is extremely small

within a pulse duration (e.g., _= 1 _sec, and weather target

velocities on the order of tens of m/sec) . Hence, target

phase shifts are measured over an interpulse period T s which

means that the pulse Doppler radar behaves as a phase

sampling device.

From the I,Q data, important information (i.e., mean

velocity, spectrum width, reflectivity, etc.) can be

extracted using the appropriate radar signal processing

techniques. In coherent Doppler radar systems, the accuracy

of such information depends on the system phase stability. By

coherent it is meant that the phase of transmitted signal is

preserved in the reference signal. As seen from Figure I,
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usually two highly stable oscillators, i.e, stable local

oscillator (STALO) and coherent oscillator (COHO), are needed

in the heterodyne detection system to retain the phase

coherence. Both oscillators are used to provide a transmitted

and reference signal, but the stability problem of the COHO

is not so serious compared with that of the STALO since the

frequency range of the COHO is several orders of magnitude

less than that of the STALO. Therefore it is considered that

the STALO plays a major role in the pulse-to-pulse system

phase stability problem. Of course, there may be many other

factors increasing the system phase noise such as the

mismatch problem in obtaining I, Q data [4] . Phase

instability factors will degrade Doppler frequency resolution

and the spectrum moment estimation quality. This phase noise

effect may also severely limit the capability of clutter

rejection filtering by spreading the clutter signal over the

Doppler signal bandwidth as seen in Figure 3.

Although Doppler radar operation was successful in some

other experimental cases [5],[6], future application of

Doppler weather radar where higher spatial resolution is

needed may require higher Doppler resolution and more

accurate estimation of spectral moments [50], [51] . A

fundamental problem is quantification of the effect of radar

system phase noise on the performance of Doppler weather

radar. However, it is really difficult to investigate all

phase noise contributing factors separately in a radar

system. Thus, a general systematic approach was developed in
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clutter return

weather signal

a return spectrum without phase noise

a return spectrum with phase noise

Figure 3. Comparison of Two Doppler Return
Spectra Showing Phase Noise Effect
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this dissertation to analyze the whole system phase noise

effect.

Two popular methods used in radar signal processing for

spectral moment estimation are the pulse pair method and the

Discrete Fourier Transform (DFT) method. Modern spectral

estimation techniques are considered to be much better than

classical methods, but they may not be suitable for real time

processing. The need to provide computed output as data are

obtained from the radar may be essential in some applications

such as airborne windshear detection when the look ahead time

is limited by the ranging capability of the radar and may be

on the order of tens of seconds at most. There are several

methods which may be used in the estimation of weather

spectral moments [7]. Among them, the most economical is

generally considered to be the pulse pair estimator, often

called a covariance estimator [8]. Especially in a weather

radar system, this pulse pair algorithm is more widely

accepted since it is simple to implement and fast enough to

process huge amounts of data for real time mapping of the

weather situation in an interested area. It is also shown in

[52] that the performance of the pulse pair estimator is even

better than that of the DFT estimator at low signal-to-noise

(SNR) ratios and narrower widths. However, the DFT estimator

has some advantages including the absence of bias due to

nonsymmetric spectra and the feasibility of eliminating

anomalous spectral powers. Also DFT based methods experience

finite parameter estimation errors at very large spectral
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widths which is not so with pulse pair processing where

errors will increase exponentially as spectral widths

increase. The other weakness in pulse pair estimation is that

the algorithm may yield meaningless results in the case of a

multimodal return spectrum while, for example, DFT processing

will show all the modes in a return spectrum. In this

dissertation these two popular estimators are reevaluated

considering the system phase noise effect. Also, bias in the

pulse pair estimation, introduced by a skewed spectrum, is

analyzed. Alternatives for spectral parameter estimation

which may be more robust in the presence of multi-modal

spectra are also considered.

One of the important potential applications of Doppler

weather radar is in a windshear detection system. When the

wind abruptly shifts its speed or direction, it can mean

deadly difficulty for an airliner particularly at low

altitudes such as on approach or take off. This dangerous

windshear is frequently caused by microbursts. The term

"microburst" was first used by Fujita [i0] to describe a

relatively small column of downward-rushing air when he was

investigating the 1975 crash of an Eastern Airlines Boeing

727 at New York's Kennedy International Airport. Since then,

an estimated 26 major aircraft accidents between 1964 and

1985 have been attributed to the microburst. Microbursts are

sudden downdrafts of highly turbulent air that may cause very



hazardous windshear conditions. In their presence a plane can

first encounter a sharp head wind, then an intense down

draft, and finally a strong tail wind, all in a matter of

seconds (see Figure 4). These resulting wind currents appear

as if they are designed to cause airline crashes. To make

matters worse, a recent study by Fujita indicates that

microbursts are more common than previously thought and can

be c_eated by relatively small harmless-looking rain clouds,

not just large thunderstorms. Therefore, it is really

difficult to avoid these dangerous situations without any

early warning system designed to detect windshear. However,

conventional weather radars may not be appropriate for use in

this kind of situation.

Since microbursts can occur within a very small

geographical scale and the reflectivity of dry microbursts

may be very weak, the weather radar for microburst detection,

should have high sensitivity and high resolution of both

range and Doppler frequency. Currently NASA is developing an

airborne Doppler weather radar for the detection of

microbursts, the number one killer of U.S. airline

passengers. For the same purpose, the terminal Doppler

weather radar (TDWR) is also now under development by

Raytheon Co. for the Federal Aviation Administration (FAA) .

The second major function of TDWR is to improve air traffic

management through forecasts of windshifts, precipitation and

other weather related hazards. However, they need further

improvement and verification to be used as a windsnear
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detection system since undetected microbursts may cause

tragic accidents. The other weather radar called NEXRAD (next

generation weather radar), which is just beginning to be

deployed nationwide, may have the microburst-induced

windshear detection capability, but its main purpose is to

replace the non-Doppler meteorological radars of the National

Weather Service. NEXRAD will operate in the 5-6 GHz frequency

range and use a low pulse repetition frequency (PRF) to

ensure the coverage of a longer range. It is developed as is

TDWR, to have high resolution and sensitivity [51]. Therefore

some NEXRAD radars with a suitable windshear detection

algorithm will be used in the airport terminal areas on an

interim basis until the TDWR is deployed.

In the detection of hazardous windshear conditions,

reliable algorithms should be available to process the

weather data obtained by a high precision Doppler radar.

Considering a typical microburst characteristic, at least two

methods are suggested. One is to compute the windshear hazard

index which is represented in terms of spatial gradient of

windspeed [ii]. The other is to recognize the "S" curve

characteristic associated with microbursts [12]. This "S"

curve, showing mean windspeed versus range, develops as a

strong downdraft induces an outburst of damaging winds on or

near the ground. Usually this kind of information is obtained

by estimating weather spectral moments through the DFT or the

pulse pair method. Based upon these same basic concepts of
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hazard detection, new techniques are developed and explained

in this dissertation.

Of course, the reliability of any detection algorithm

depends on the quality of original data collected by a

weather radar. Therefore the system phase stability problem

is one of the important issues in developing windshear

detection radars. Although the airborne Doppler weather radar

is considered to have good potential for providing the pilot

information to help avoid the hazardous windshear conditions,

it may be susceptible to phase noise. The period over which

the radar return can be considered stationary limits the data

analysis window in an airborne weather radar as compared to a

ground based Doppler weather radar. Also since the radar

platform is moving there may be less advance observation time

as the aircraft approaches the area of windshear hazards.

These limited data records may yield poor estimates of

autocorrelation or power spectrum parameters which will be

further degraded by system phase noise. Phase noise may be

compounded in an airborne weather radar which is operating

under look-down conditions. Since clutter power is typically

much stronger than weather return power, increased clutter

spectrum width due to any system phase instability will

obscure the weak weather return signal making the clutter

rejection inherently more difficult.
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Windspeed Gradient and F-Factor

The phenomenon of windshear is associated with air

turbulence and can generally be characterized by large

spatial gradients of wind velocity (windspeed gradient). It

seems feasible that the existence of a windshear condition

may therefore be established on the basis of the measured

wind velocity magnitude change within an airspace volume,

given adequate spatial resolution of the measurements. With a

typical pulse Doppler weather radar employed to remotely

sense windspeed, the distribution of measured Doppler

frequencies within each range cell is related to the

reflecting particle motion within that range cell. The mean

Doppler frequency of the return is a measure of the average

windspeed within a range cell, while the spread of these

frequencies is an indication of the turbulence within the

range cell.

Bowles [ii] defined a hazard index F which is

represented as

wl w h
F=

g v

where W x' is the rate of change of the horizontal component of

windspeed, v is the relative speed of the aircraft, g is the

acceleration due to gravity and W h is the vertical component

of windspeed. This F-Factor was derived considering aircraft

energy balance for flight in spatially and temporally varying

windfields. Positive values of F indicate a performance
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decreasing situation while negative values mean the opposite.

In [II], it is shown that the average F values of all

investigated aircraft accidents exceeded 0.15 which may be

considered as a threshold value. Although the vertical

windspeed is needed in the computation of F value, the

forward-looking airborne radar can only measure the radial

windspeed along the flight path of the airplane. Therefore

considering only the measurable term Wx, the radial component

of F, FR is given as

!

Wx v AW×

R g -- g AR

where _W x is the change in radial velocity between range bins

and _R is the distance between range bins. From this

expression, it should be noted that F R represents just the

normalized value of windspeed gradient. Therefore, the direct

measurement of windspeed gradient with low PRF radar may be

very useful in the detection of hazardous windshear

conditions.

Detection and False Alarm Probability

A reliable windshear detection system should alert a

pilot when hazardous conditions exist, but nuisance alarms

should be avoided by selecting a suitable statistic for

detection. One fundamental problem is how to select the

proper threshold value. A hazard index F-Factor has been

suggested as appropriate [II]. Although a decision should be
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based on both the detection and the false alarm probabilities

along with risk factors associated with each possible

outcome, it is difficult to compute those values since the

probability distribution of F values must be known. If

P(FIH I) and P(FIH0) , the conditional probability distribution

of F in the presence of a windshear hazard, HI, and with no

hazard, H0, respectively, are known, a Nyman-Pearson

criterion [13], for example, may be applied to set a

threshold value which maximizes the probability of detection

PDET while constraining the false alarm rate PFA" An optimum

test, thresholding the likelihood ratio,

P(FIHI)/P(FIH0)=A(F) > k

would indicate a windshear hazard alarm where PDET and PFA are

given by

PDET _fP (hlsl) d_, PEA _;P (ADs0) d_

This likelihood ratio test is illustrated in Figure 5. In

order to validate this test, numerous observations of

microbursts should be made to estimate a reliable P(FIHI) .

This in turn can be used in determining a receiver operating

characteristic curve which will show the relationship between

the decision threshold value, PDET and PFA. An improved hazard

index estimator has been suggested by Britt [14] using a
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Figure 5. A Likelihood Ratio Test of Two Conditional

Probability Density Functions
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weighted least square technique to estimate windspeed

gradient. This should provide a more reliable conditional

probability distribution of F values with very little

additional computation requirement. The basic component in

the hazard index is the estimate of the spatial gradient of

windspeed.

Problem Statement

Phase stability is a very important factor in obtaining

accurate and reliable information in a coherent radar system.

Since Doppler weather radar applications may impose severe

requirements on phase stability, it is necessary to analyze

the system phase instability problem which can be caused by a

variety of sources, e.g., radar oscillators, complex sampling

procedures, filtering and amplification, etc. [53], [54], [55] .

Radar oscillator instability in a coherent radar has been

previously analyzed, e.g, [15], [16], however, this work has

been concerned primarily with a target detection radar

system, not a weather radar system, and generally no analysis

of the entire system phase noise effect is included. They

have just considered one major phase noise source, i.e.,

STALO in relation with the performance of a single target

detection radar. Therefore, in Chapter II of this

dissertation, a general approach is developed to investigate

the whole system phase noise effect. Two very popular weather

signal processing algorithms, i.e., the DFT method and the

pulse pair method, are analyzed considering phase noise.
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Finally a benchmark laboratory test is proposed for the

measurement of whole system phase noise in a pulse Doppler

weather radar.

The commonly used pulse pair method is quite attractive

when processing an enormous amount of weather radar data in

real time since it is considered the fastest algorithm

available. The original concept of the pulse pair algorithm

was developed by Miller and Rochwarger [8]. Since then, it

has been studied and analyzed by many researchers. The pulse

pair method was derived and has been evaluated most often

under the assumptions that the weather spectrum is symmetric

and relatively narrow. With the turbulent situations

associated with windshear, these assumptions may not be

valid. Some observed weather spectra [17] show that nearly

25% are seriously skewed and can not be considered to be

symmetric. This means that the pulse pair method may need

reevaluation considering the skewness effect. Chapter III

analyzes this effect using the skewed Gaussian spectrum

model.

The poly-pulse pair method was originally suggested as a

way of enhancing the accuracy of spectrum moment estimation,

but this method may be also useful in reducing the bias

errors of a skewed spectrum. Based on the similar concept, a

new modified pulse pair mean estimator is developed in

Chapter III where it shows an improvement over a conventional

method by reducing the bias errors. In the symmetric

spectrum, the mean and the mode are same. However, in the
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case of a skewed spectrum, it may be questionable that the

mean is a more representative value than the mode. Hence the

difference between the mode and the true mean due to skewness

effect is also presented in Chapter III.

Chapter IV presents a new method in the measurement of

windspeed gradient. Since the windshear hazard index is

computed from windspeed ar_dient, it may be considered the

most important information in a windshear detection radar.

Usually this information is obtained through the measurement

of mean windspeed in each range cell. Because of the very

strong wind involved with microbursts, a high PRF (pulse

repitition frequency) radar is preferred to increase the

Doppler spectrum range and thus the maximum unambiguous

windspeed. This, however, results in an increased ambiguity

in the range measurement. To overcome this difficulty, a new

method is suggested for direct measurement of the windspeed

gradient using a low PRF radar.

Another challenging problem arises in dry microburst

cases where a very low signal-to-clutter ratio may cause

meaningless results without efficient clutter filtering. In

some situations where clutter and weather spectra are not

well separated, it is difficult to remove the clutter without

deteriorating the weather signal. Even though efficient

clutter filtering can be done using algorithms developed

recently [12],[18],[19], the additional computation

requirements may be prohibitive in real time weather radar

signal processing. A new approach described in Chapter V does
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not need any preliminary processing such as clutter

filtering. It applies a modified Prony method to estimate

peak points of weather return spectra. These values may be

used to recognize typical "S" curve characteristic associated

with a windshear phenomenon. Using a NASA simulation model,

some validating results are also shown in Chapter V. Overall

conclusions and some recommendations for future work are

presented in Chapter VI.



CHAPTERII

PHASENOISE EFFECTSON WEATHERSPECTRUM

MOMENTESTIMATION

Introduction

In the weather radar return the superimposed scattering

of incident electromagnetic energy from many randomly

distributed particles causes an unavoidable phase jitter

effect which generally contributes to the spectrum width of

the weather radar return signal. With a coherent pulse

Doppler radar, this creates some ambiguity in determining a

representative windspeed condition within a particular range

cell. Any radar system phase instabilities may also

contribute to this ambiguity and affect the Doppler frequency

resolution as well as the dynamic range capability. There are

many potential sources of system phase instability (phase

noise or phase jitter) but a potential primary source is the

stable local oscillator (commonly STALO) which provides

transmitted and reference carriers within the radar. If the

range time is adequate to decorrelate the STALO oscillator

phase, any phase variation with time (jitter) may be adequate

to contribute error in return Doppler spectral estimates.

Furthermore, this may not be apparent when observing the

weather return Doppler spectrum because of its inherent

spread.
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This chapter provides an analysis of the effect of pulse

to pulse system phase jitter uncertainty on the pulse pair

[29] and DFT based spectral moment estimates. More

importantly a general analysis approach is developed which

will allow for a quantitative assessment of the effect of the

entire radar system phase noise. The approach can be used

with an analytical model description of phase noise or with

an actual measured system phase noise power spectrum.

Intrapulse phase uncertainty is not considered here.

An analytical development of the Doppler spectrum using

a Gaussian approximation for the phase jitter spectrum is

presented first. Even though a power-law model is more

appropriate in representing experimental results of a STALO

phase noise spectrum [20], a Gaussian model is considered

here for two reasons. First, it is reasonable to fit a

Gaussian distribution to a major portion of a power-law phase

noise spectrum particularly in the tails of the spectrum.

Secondly, a Gaussian assumption provides mathematical

tractability. It is recognized here that spectrum moment

estimation error may depend upon the specific model of phase

jitter noise. It is also true that the optimum model is not

known. For example, considering an oscillator alone, even

though many related papers have been published, none of them

exactly describes all instability factors [21],[22],[23].

Therefore, the approach developed here is generalized to

enable analysis of all types of phase jitter effects through

numerical computation of the autocorrelation function from a
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given measured or otherwise specified noise spectrum. This is

particularly important because the analysis procedure can be

used for any set of phase jitter power spectrum measurements

that might be available or for any analytical spectrum

function defined in terms of a set of values. The spectral

mean and width as estimated by the pulse pair method and DFT

method are analyzed analytically considering the effect of

phase jitter. For the Gaussian model, the effect of phase

jitter is computed for a particular phase jitter power level

while allowing variation in both the weather spectrum width

and the phase jitter spectrum width.

Gaussian Phase Noise

Any phase jitter occurring at the transmitter stage will

spread the original sinusoidal signal spectrum. The stable

local oscillator output is modelled as

V(t)= VoCOS(coct +4_(t))

where _(t) is a phase jitter and the carrier is _c=2Kfc. If

one assumes that _(t) is a normal stationary process with

zero mean and variance _2= E[_2(t) ], the spectral density of

the transmitted signal is given by [24]

2

-' X1e {8(f-f)+S,(f-f)+ , [S,(f_,(f)lf }
n=2 " c

(2.1)
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where the first term inside the braces of (2.1) relates to

the sinusoidal energy at fc , the second term is the phase

noise spectrum located at fc and the last term includes n-I

convolutions of the phase noise spectrum with itself,

followed by a translation around the carrier frequency fc-

As the mean intensity of phase noise becomes very small, the

spectral density of phase jitter can be approximated by a

Gaussian spectrum [25], [26]; i.e.

S0  --W0exp{?j}
C

where the relationship between phase jitter width A_c 2 and the

total phase jitter power _2 is represented by

oo

A£0c
a2=.. so(f) df 2_ W°

With Gaussian phase noise , the spectral density of the

transmitted signal from (2.1) can be obtained analytically as

Sv(f)= 2_0 e-°2[_(f-fc) + 2'1/-_ _ O'2"exP[-(£°-r'°C)2Ac0c n=! n'_ n A_ ]}
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If O is small(O< 0.5 radians), which should be true in a high

quality oscillator, Sv(f) can be approximately given by

-(o>-%)2
_0 { _(f_f)+ 2_ 02 exp[ ]}S_(0= "T"e°_

Aco Aco 2
C C

(2.2)

It can be noted that the theoretically exact description for

the spectral density is [27]

_0 i 0a_¢_212(_)) cos(cocx)e4_dxS(B=--_-- exp(--_---
.oo

where

E{[ _(tk+X)-0(tk)]2}

(f.0c'¢)2

This theoretical expression would be useful if an

approximation for the true variance I2(_) could be determined

for all %, but it is very difficult to obtain this

experimentally except for a few discrete values of • due to

the requirement of very long observation time. Therefore, the

approximation in (2.2) provides a realistic means of

analyzing the effects of phase jitter in the Doppler radar.
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The transmitted radar signal is scattered by many

particles and the signal frequency will be shifted according

to the particles' velocity which is the well known Doppler

effect. Using the description given in (2.2), the scattered

return signal can be approximated as

V 2 (f_fc_fd) 2
( )+o_ 1

Sv(f )=_e-°_C{_Wex p -
2w2 f o/2+w2)

2
(f-fc-fd)

•exp (- ) }

2 (Af2c/2+W 2) (2.3)

where W is the spectrum width with zero transmitter phase

noise and C is a constant determined by the reflectivity of

target particles and some other factors (see for example

[28]). If the noise is small (_ small), the second term in

(2.3) can be ignored and the typical Doppler return signal

will have a purely Gaussian spectral shape. With this

assumption the autocorrelation function of the return signal

after demodulation will be

2

R(¢)--_ ° C T(o,w,'_) _co_ +N 8, o (2.4)

where
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"_(O,W,'_)= e "a2 { e -2_2w2'r2 -2_ (W ,,,__ N2+0 2 e z }

The additive white noise N_,0 is included in the signal model

to represent the usual background noises [29]. The

autocorrelation function shown in (2.4) is obtained under the

assumption that no phase noise occurs at the receiver in the

process of demodulation. However, in the interest of a more

complete understanding of pulse pair estimation, the effect

of phase jitter occurring at the receiver should be included.

In the pulse-pair method [30], a two-point estimate of

the complex autocorrelation is based upon processing coherent

returns from pairs of transmitted pulses. Assuming that the

pulse pairs are separated by T s and repeated with period T as

illustrated in Figure 6, the complex time autocorrelation

function of the complex received wave form z(t) at the lag

value T s is defined as

R(Ts)=E {Z (iT) Z(iT+Ts) }

T$
I I

T
I I

Figure 6. Pulse Pairs for the Estimate of Autocorrelation
Function
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Considering the phase deviations in the process of

heterodyne demodulation designated by (1)iT and (_iT÷Ts, the

autocorrelation function is

R'(Ts)= R(Ts) E ( e -j_tT Jd_iT+T' } (2.5)

where, from (2.4),

2

R(Ts)= S 'Y(G,W,Ts ) jt%T' , S= _'_0 C (2.6)

If one assumes that _l=_iT and _2=_iT+Ts and are, for example,

normal random variables [20], then (2.5) can be rewritten as

R' (T)= R(T)(2/I;"_ lll_-p 2 )-11ffe -jotj'2 exP[-(_l'_2-2p(Ts)(_l*2 )

/(2_ _ (l-p2))] dthld(_ 2

where

9(T)= E[t)lt)2]/_ 2 and E[¢1¢2]= ¢1¢2

The complex autocorrelation function can be further reduced

to [31]
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)

R (Ts)= R(Ts) exp[-(¢2-¢lO2 )]

= R(T s) exp[f S O(f)(1-coscoTs) dr] (2.7)

Similarly S¢(f) can be assumed to have a Gaussian noise

spectrum as described in the previous section since the same

oscillator signal is fed into the receiver for heterodyning.

With this assumption (2.7) will become

)

R(T s) =R(T s) q"(c_,Ts)+ NST,,O (2.8)

-Ao 
C S

• (O,Ts)= exp[-_2{ 1-exp(, 4 ') }]

where R(Ts) is given in (2.6) and _ is the r.m.s, phase noise.

As seen from (2.8), this modified autocorrelation at lag

value T s is explicitly a function of the phase spectrum width

&_c and the total phase jitter power O 2 with the additive

white background noise also included.

General Approach by Numerical Computation

Using the system approach, the general complex

autocorrelation function of the weather return signal in the
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presence of phase noise can be obtained without full

analytical representation of the phase noise spectrum. Again

representing the weather return Doppler spectrum as Gaussian,

modulation and demodulation procedures also can be

represented by a simple mathematical form considering phase

jitter as can be seen from the Figure 7. Rj and Rw are

autocorrelation functions of phase jitter. Rj can represent

the effect of phase instability in the radar system. Rw

represents phase jitter due to particle scattering. Following

the same procedure used in deriving (2.8) [26], these

autocorrelation functions can be written as

Rj=E[e -j_'(t)j¢(t+T')] =exp(-{ fS (f) df-

- 2/t2wy
R=e

W

C • attenuation constant

where

R (Ts)= ; S,(f) _2m'T, clf (2.9)

Since the exponential term in Rj represents the difference

between phase noise power and the autocorrelation of phase

noise at Ts, it can be shown that Rj goes to 1.0(no phase

noise effect) as the phase noise spectrum becomes narrower.
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Considering statistical independence between these terms, the

output complex autocorrelation function will be just the

multiplication of all individual autocorrelation functions

which is shown to be

' f -2_2w2T*2 jr,oaT sR(Ts)= S exp(-2{ S¢(f) df-R¢(Ts)}) e e + NST,,O (2.10)

As seen from (2.9), a closed form expression for R_(Ts) is

generally not possible unless the phase noise spectrum is a

known functional form, e.g., Gaussian. Therefore, some

numerical method may be needed to determine Rj. An adaptive

quadrature algorithm [32] is used here in the computation of

these terms. The next section analyzes the effect of these

modified autocorrelations on the quality of the pulse pair

and DFT estimates.

Pulse Pair Estimation Errors

Modern radar oscillators are very stable with small

phase noise power so that the effect of phase jitter in a

return Doppler spectrum may not be apparent, even if it does

have an effect on the pulse pair estimates. Figures 8, 9 and

I0 illustrate this situation. In Figure 8 simulated return

Doppler spectrum is shown with and without phase jitter. A

zero mean normal signal return spectrum with unity total

power and a width corresponding to 15% of the processing

bandwidth is depicted along with the resulting spectrum
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dB S/N=0 dB, wT =0.15, Af T =0.4, 0'=-0.3
S C S

I I I

1 0 1

2T s 2T s

Doppler Frequency (Hz)

..... with phase jitter without phase jitter

Figure 8. Example of Two Simulated Return Doppler

Spectra Considering Phase Jitter Effect
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^

_SD (fT s)

1._ /

io' /

00_ :///
0 "_ .o'/

o 6', j/J"

0
0

0
I ......... I ......... I ......... I ......... I ......... I .........

0.00 0.05 0.I0 0.15 0.20 0.25 0.30

wT
S

..... with phase jitter without phase jitter

Figure 9. Error Standard Deviation of the Spectrum
Mean Pulse-Pair Estimate for the Example in Figure
8
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(_SD(WTs))2+M(TsB)2

0\\ ]
0.

°IR- //l
o._ _ i
o.3
o._

o._

0.6

0.05
......... I ......... I ......... I ......... I .........

0.i0 0.15 0.20 0.25 0.30

wT
S

with phase jitter without phase jitter

Figure i0.

Pulse Pair

8

R.M.S. Error of the Spectrum Width

Estimate for the Example in Figure



36

contaminated with statistically independent phase noise

having a total power level at 9% of the signal power and a

width which is 28% of the processing bandwidth. This phase

noise width is less than that of an inverse f type

distribution with the same total phase noise power. There is

little apparent difference between the two spectra depicted

in Figure 8. Analyzing the standard deviation of the error

of the pulse pair mean estimate for the situation depicted in

Figure 8 (wTs=0.30), however, shows in Figure 9 that the

phase jitter causes more than a 15% increase. For other

Doppler spectrum widths, this same phase jitter error can

cause up to 50% increase in the error standard deviation

without an apparent change in the spectrum. From Figure i0,

the rms error of the pulse pair width estimate also can be

significantly affected by this phase jitter, causing

approximately 15% error for the Doppler return spectrum width

considered. These results suggest that it may be useful to

analyze and quantify the phase jitter effect on pulse pair

estimation errors even when the effect on the Doppler

spectrum is not apparent.

Consider estimation of the mean frequency with pulse

pair processing [29]. The estimated return spectrum mean is

defined by

- 2KTs ar R(T s)
(2.11)
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where

^ l_z*R(Ts) - _ (iT) Z(iT+T s)
i=0

As seen from (2.9) and (2.11), the estimate of the mean

frequency will not be dependent upon phase jitter because it

does not affect arg{R(Ts) }, i.e., only the magnitude scaling

is changed by phase jitter. Thus, according to this

analysis, no bias will be introduced into the mean frequency

estimate because of phase jitter.

The variance of the mean frequency estimate as

previously published [30] is

VAR (fd) = [8_2T2s_ 2 (Ts) ]-i {M-2[I__2(Ts) ] ._2(mT) (M-]ml)

m=- (M-I)

2

MS 2 MS _'-r s,0

_ (2Ts)

M _T-Ts,°] } (2. 12)

This expression can be rewritten considering phase jitter by

replacing _(T s) with _' (Ts) where

_(T)= _(a,w,T) _(a,T s)

for the Gaussian spectral model and
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]3'(Ts)= exp(-2 {fSo(f) df-Ro(Ts)}) e

for the arbitrary spectral model. Here M is the number of

sample pairs.

Analyzing the variance expression in (2.12), if the

total phase jitter power O 2 is held constant, one can

investigate the effect of varying the spectral distribution

of the phase jitter. The parameter _fc determines the shape

of this spectral distribution. As _fc increases, the phase

jitter spectrum is broadened. As can be seen from Figure II,

which is a plot of the mean frequency estimate standard

deviation versus normalized _fc, when the phase jitter

spectrum is broadened, an increase in the variance of the

mean frequency estimate can be expected. Also from Figure

Ii, as the weather spectrum width W increases, this effect on

the mean frequency estimate is more pronounced. Figure 12 is

included to show the effect of phase noise through numerical

computation from experimentally obtained phase noise data

[34]. From Figure 12 it can be said that the Gaussian jitter

spectrum model yields a maximum error bound in the estimation

of mean frequency.

Considering the weather spectrum width estimate using

the pulse pair method, the width estimation is independent of

the mean frequency [9]. If the width is sufficiently smaller
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_SD (fT s)

1.o7. _ _ 11_
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Figure ii. Error Standard Deviation of the Spectrum
Mean Pulse Pair Estimate Considering STALO Phase
Jitter
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Figure 12. Comparison of Error Standard Deviation of

Spectrum Mean Pulse Pair Estimate

the
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than the Nyquist interval, one form of the estimator which

is not dependent upon spectrum shape is given by [9]

__L_I
8

(Ts) I

1
A

S

1

2

when R(Ts) <S

when R(Ts)[_>S

(2.13)

where

= _ IZkl - N
k=0

and _is an arbitrarily small number. With the introduction of

phase jitter, this estimator becomes

1

Ii l̂ '(Ts) when R(Ts) and
^' 1

W= _Ts S ^ .

when [R(Ts)l_>_
(2.14)

A ! A

where since IR(T,) I from (2.7) replaces IR(Ts) I in (2.13), the

estimate of spectrum width is biased. Previous results for

the asymptotically unbiased variance can now be extended to

yield the variance of the width estimate as
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VAR(W)= [32M_4(WTs) 2_2(Ts) T2s]-1{ 2 • [ i- (I+_T_Ts,o)_2(Ts)

2

4 _2
+$T_Ts,0 _ (Ts)]_+ [i+ (I+_T_Ts,0) (T s) ]_

+_2 (Ts) _ (2_2 (sT) + _2 (mT) _2 (Ts)

m=- (M-l)

+_ (mT+T s (I--_T_Ts,0) ) --4_ (mT+T s) ._ (mT) _-i (Ts) }

where _(T s) given in a previously derived result [9] is

replaced by _' (T s) as was done in (2.12). The variance of the

width estimate may be increased by phase jitter, but does not

completely describe the goodness of the width estimator,

since phase noise will bias the width estimate of spectrum as

seen from (2.14). Thus, in this situation the mean square

error defined by

^ 2
E{ (_-e)2} = VAR(e) + B

^

where B is the bias of a biased estimation eof the parameter

8, will be a more representative measure of the effect of

phase jitter on the pulse pair estimation of spectrum width.

The bias term and the root mean square error of the width

estimate are plotted in Figures 13 and 14 respectively.

Figure 14 shows that the variance of width estimate is also

increased due to phase jitter. In each case the normalized

weather spectral width has been varied to illustrate its



-- 43

Oo

0.04c

0.03!

0.

0.02_

0.02(

0.01

0.01

0.00

0.00
0

WT s 0. 0.00
0.05

0.40

0.27

0.13 AfcTs

Figure 13. Bias of the Spectrum Width Pulse Pair

Estimate Considering STALO Phase Jitter
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Pulse Pair Estimate Considering STALO Phase Jitter
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effect upon the estimation errors. As is seen in Figure 13,

the bias in the width estimation is more sensitive to

increasing phase jitter when the true normalized spectral

width is small. This variation in sensitivity is less

evident when considering the r.m.s, error in the width

estimate in Figure 14. It should be noted that in each of

Figures ii, 13 and 14 the curve for _fc=0 (no phase jitter)

has been previously published [30].

DFT Estimation Errors

Consider the problem of calculating the mean frequency

and the spectrum width from the DFT-derived spectral density.

The most straightforward DFT spectrum estimates are simply

the mean and width estimate of the derived spectral density

S(fi) [7], i.e.,

^ _fiS (fi) _ (fi-f) 2S (fl)

f= i and w2 = i

_S (fl) _S (fi)

i i

These, of course, are parameter estimates of the composite

signal-plus-noise spectrum. As it is well-known, these are

not satisfactory estimates of signal parameters except for

large signal-to-noise ratios. Therefore, some technique of

removing the noise influence should be implemented. One

method of noise suppression is to simply subtract the noise
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spectral density N(fi) from the derived spectral density and

calculate the estimates of the resulting spectrum, i.e,

_fi[S(fi )-N(fi) ] E(fi_f )2 [S(fi )-N(fi ) ]
f= i W2 = i

I

i i

These estimates are unbiased by noise even for low signal-to-

noise ratios. This method has been chosen here as the basis

for evaluating the phase noise effect since the variance of

both these estimates was derived earlier by Berger and

Groginsky [33]. Another variation [7] to eliminate biases due

to aliasing is useful for symmetric spectra, but it is not

adopted in this analysis because no variance expression is

available. Simulation results do, however, show similar

estimation quality when compared to the method chosen here

for further analysis.

Using previously derived variance expressions [33] and

replacing the summations in the estimates with an integral

over the Nyquist interval in each case, the mean frequency

estimate variance can be expressed as
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1 1
m R

2T s 2T s

var(f)--- --_ [Ts f2S n(f+fm) df + 2 (_)T s f S n(f+fm) df

MT i iS

2T s 2T s

1 N 2

+ m(s)12 ]

and the width estimate variance is

1

2T s

var(w)= --2 { [f +w -2w f ]Sn (f+fm) df

MT qw l
S

2T s

1

2 2Ts

s N 4 4 2 2

+ _2 _( ) [f +w -2w f ]Sn(f+fm ) df
2w I

2T s

2 2

N 2 1 wTs 1

÷ 2 2 7-q7
320w T

S

where

f : the true mean frequency,
m

Sn(f): the normalized power spectrum, i.e,

Sn(f)=S(fi)/S where S=IS(fi),

W: the true spectrum width and

N: a constant white noise power .

For a narrow Gaussian spectrum without phase

variances can then be simplified to

noise, the
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^ 1 wT 2 N 1 N 2
var (f) 2

MT 49
S

and

2 2

^ 1 3wT 2 N 1 w T s 1 N 2

var (w) : -- [-----/-s+(wTs ) ('_)+{ 2 2+--'_--_) (-S) ] "
MT 2 3_ 320w T

s S

Unless the spectrum width is small compared to the Nyquist

interval then zero mean assumption is needed to validate

results. With the zero mean assumption, this analysis of the

phase noise effect can validate the simplified derivations

for other than very narrow spectra.

Considering Gaussian phase noise, The

spectrum Sn(f) becomes

normalized

-2G2_ "_ 2 ko2K f2

S (f)= e __j exp(
n 1 Af2

k=0 2 Af2 7

_(w +k ---_c) k ' 2 (w2+k ----_c)
2 " 2

(2.15)

where w is the width of the Gaussian spectrum without phase

noise. Since the phase noise power is very small (0<0.5) in

quality oscillators, the normalized spectrum can be

approximated very accurately by the first four terms, i.e.,
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S (f)= e
n

+

2
f

2--e +

w

1

_ (w2+Af2) 2
c

1

23.22

(w _Afc)

2O2
1

m

_ (W2+Af2/2) 2
C

2
f

2 2

2 (w +Afc )

e

f2

2 3 2

2 (w +--Af c)

e

2
f

2 2
2(w +Arc/2)

49

Using this spectrum expression, the variances were rederived

and the results are given in Appendix A. From these

expressions, one can investigate the effect of varying the

spectral distribution of the phase jitter (parameter Af c) and

also the effect of varying the phase noise power (parameter

02) . Figure 15 shows that the standard deviation of the mean

estimate is increased as AfcTs increases for the given phase

noise power. From Figure 16, it also can be seen that

broadening the phase noise spectrum increases the standard

deviation of the width estimate.

Although a Gaussian phase noise assumption may be

reasonable, and with this assumption a mathematically

tractable analytic analysis is possible, the effect of phase

noise may actually be dependent upon the specific noise model

selected. For this reason, as in the previous section,
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another approach was developed to analyze the effect of any

given phase noise spectrum S_(f) which may be defined by

interpolated experimental data or which may be some other

kind of appropriate phase noise model. For the specific phase

noise spectrum, S_(f), the procedure to obtain the variances

of Gaussian Doppler spectrum with phase noise is described in

Figure 17 using block diagrams. With this approach, published

interpolated phase noise data [34] were processed to

investigate DFT based spectral parameter estimation errors.

As seen from Figure 18, the phase noise effect is almost

negligible as might be expected, since the given phase noise

spectrum is extremely narrow and contains very little power.

Limitation of Clutter Cancellation Capability

Ground clutter returns in an airborne Doppler weather

radar are typically dominated by a very strong spectral power

around the Doppler frequency corresponding to the aircraft

ground speed. This is treated as the zero frequency reference

in the discussions presented here. This ground clutter return

is assumed to be from stationary structures on the ground and

the ground itself. Additional clutter may also be present as

return from moving objects (vehicles, etc.) on the ground.

Without proper clutter cancellation, the spectrum moment

estimates associated with the weather return may be so

seriously biased that they do not provide reliable

information for windshear detection [35]. It is considered

that a I0 dB signal-to-clutter ratio (SCR) is needed for
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accurate mean velocity estimation via a pulse pair processor

while the spectrum width estimation may require 15 dB SCR

[36]. This means that at least a i0 dB SCR should be achieved

by filtering clutter power. Clutter power located around zero

frequency can be removed very effectively using a high pass

filter which attenuates low frequency powers to the desired

level in a stopband region, but the width of stopband should

be carefully selected to avoid elimination of low frequency

weather signals. When the clutter spectrum is narrow, clutter

cancellation can be done very successfully without degrading

the weather spectrum. However, phase noise in a radar system

will broaden the clutter spectrum making some portions of

power spill into a pass band region limiting clutter

cancellation capability. This may be a problem particularly

in the case of a dry microburst situation where the weather

signal is much weaker than the clutter return.

If it is assumed that the clutter and weather return

spectra are both Gaussian, the return spectrum can be modeled

as the sum of two normal functions

2
f2 I (f-fd)C

--exp (--_) _ exp (- 2 )
S (f) _ Wc 2We _ Ws 2Ws (2.16)

where C = 10-(SCR/10), fd is the mean frequency of a weather

return spectrum, the clutter is assumed to be zero mean, and

W c and W s are the spectrum width of clutter and weather return
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respectively. Considering the phase noise effect and using

Equation (2.15), Equation (2.16) is rewritten as

2k_ k
S(f)= Ce-2°_2"

2 Af2c

_:°4--_ (w_+k--/-)_i2

f2
exp (- 2 )

2 Afc

2 (Wc+_-_ j

+e_20.2'_. 2ko "2k
2 Af2c

k:°4-77 (w,+k--2--')_/2

2
(f-fd)

exp ( )
2 Af2 (2.17)

2 (Ws+_-- _)

Here, it should be noted that a Gaussian phase noise spectrum

has been assumed. Since _ is usually very small as described

before, Equation (2.17) can be approximated using the first

four terms of the infinite summation. Considering the use of

an ideal high pass filter having the stopband width of 2B and

an attenuation value of ATT in dB is assumed, the SCR of the

filtered return spectrum is represented by

SR

SCR = 101ogi0(-_)

where CR and SR can be expressed as

CR= Ce-2_ [Q (_c) +2°"2Q (wB-_) +2(_4Q (_-)_6Q1 2 (W)._B_B]

> >

_2 +_4_6(I_Q B ) ]+2_4 (I-Q ( )) 3 (W_)
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where

2
Wk = (Wc+k_) 1/2

[ 1 -gn .

, Q(x)=g and
X

B-f d B-f d B-f d
SR = e -2°2[ (I-P( ))+2_(I-P( ))+204(I-P(

Ws Yl Y2
))+

B-f d +i 0-ATT/10e_20_ B-f d B-f d
3406(I-P( Y3 ))] [P( Ws )+202p( Yl

B-fd 4 B-fd

204P( Y2 )+306p( Y3
)]

)+

where

2 Af2c 1/2 B-fd _ 1

= JYk = (Ws+k_) , m (--_)

3-f d

--7--

-I;/2
dy.

The resulting SCR figures after filtering the return spectrum

are plotted for various values of fd by changing phase noise

power 02 . It has been shown elsewhere [35] that the SCR of a

filtered spectrum is decreased if the weather spectrum is not

well separated from the stopband region. The emphasis here is

placed upon the phase noise effect. It should be noted that

the results are obtained assuming use of an ideal high pass

filter and no aliasing effect in terms of the spectral

representation. Figures 19 through 22 are obtained by
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Figure 19. Phase Noise Effects on Clutter Filtering

of 50 dB Stopband Attenuation for a Doppler Weather
Return with 0 dB SCR
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changing the attenuation value with the fixed stop band width

of 150 Hz. All plots show that the SCR of a filtered spectrum

is decreased as the phase noise power increases. The

undesirable effect of clutter filtering resulting in some

elimination of the weather signal power is also noticed. As

expected, Figure 19 shows that phase noise is not a serious

problem if the weather signal is strong or comparable to the

clutter return. However, as can be seen from Figures 20 and

21, any small phase noise may seriously limit the clutter

cancellation capability when the clutter power is much

stronger than the weather signal. Even with the ideal high

pass filter with 70 dB attenuation in the stopband, more than

I0 dB SCR cannot be achieved if phase noise power exceeds

0.05, as shown in Figure 22.

Proposed Measurement of Radar System Phase Noise

It is desirable to determine the effect of phase jitter

noise on the error in the pulse pair and DFT parameter

estimates to understand the expected radar system

performance. This section describes a procedure for the bench

test of the radar to yield an estimate of the effective phase

jitter power spectrum. For this purpose, the transmitted

signal with some delay time is to be fed directly into the

receiver. I,Q data would then be obtained to analyze phase

jitter in the absence of a return Doppler signal. A return

signal is not included in the procedure since just the pure
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phase noise term is of interest. Figure 23 illustrates the

setup.

It is anticipated that the stable local oscillator

(STALO) will be a major potential contributor to phase

jitter, even though it may be very small. The following

analysis is based upon modelling the STALO phase as time

varying. At the receiver illustrated in the Figure 23, the

demodulated noise signal is

j (_(t) -_(t-t d) )

V (t)=I(t)+jQ(t) = e
O

where t d is the delay line time (delay time is less than 25

_sec in the case of 7.5 km maximum detection range). Here,

STALO oscillator phase jitter can affect the modulated signal

at the transmitter and after a delay t d can affect the

demodulated signal. The interest here is in measurement of

the effects of pulse to pulse phase jitter as will be

observed at the receiver.

The autocorrelation of the receiver output Rj(Ts,t d) will

be a function of both the transmitter/receiver delay time t e

and the pulse pair separation T s. It can be expressed as
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Rj(Ts,td)=E[V0(t) (t+T s) ]

J(4_1(t)-_!(t-td)) -j(_;(t+T s)-4_!(t+Ts-td))

=E [e e ]

J_l (t) -j_l(t+Ts) -j(_1(t-td) j_)l(t+Ts-td)

=E [e e e e ] (2.18)

where _1(t) represents the phase variation with time in the

radar oscillator. With a PRF on the order of 3-4 kHz, the

pulse separation is perhaps two orders of magnitude greater

than t d. It is expected that phase variations within the radar

would be very slow such that the intra-pulse variation can be

considered insignificant, but the delay time t d may be long

enough to experience a measurable phase variation. Thus if

td<l _sec the radar phase at the transmitter and at the

receiver can be considered identical for each pulse and

jitter present at the transmitter is exactly cancelled at the

receiver, i.e., Rj=I.0. In the case of much longer t d delays,

_l(t) and _l(t-td) can he considered uncorrelated and the

expression in (2.18) can be reduced to

J#l(t) -j_)l(t+Ts) -J_l(t-td) J_l(t-td+T s)

Rj(Ts,_)= Rj(Ts) =E[e e ]E[e e ]

J#l (t) -J_l (t+Ts) 2

= {E [e e ] }

--exp(-2{fS (f) df-R (Ts) }) (2.19)
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using (2.10). Equation (2.19) represents the worst case that

can be assumed since no phase cancellation occurs. With

realistic delays, td, what actually will occur is probably

Rj(Ts)<Rj(Ts,td)<l.0, since Rj(Ts,td) would generally decrease

as t d increases.

The analytical result suggests that a practical

measurement of Rj(nTs,td) may be possible using sampled I,Q

data if the number of samples is very large , i.e.,

M-I

Rj (nTs)= Vo(iT)Vo(iT+nT s)
.=

where nT s is the delay between pairs of pulses separated by n

pulse repetition periods. Characterizing Rj(nTs,t d) versus n

for specific values of td will then delineate the phase jitter

pcwer spectrum due to the radar instabilities. The resulting

measured complex autocorrelation could then be used in (2.12)

and (2.13) to correctly specify the parameter estimation

error for the actual system used.

Of course, it is expected that the measurement results

will represent Rj as a composite of all system phase noises.

This chapter has developed a procedure for specifying

the phase stability of a Doppler radar system through

definition of the relationship between pulse to pulse phase

error (phase jitter) and weather spectrum parameter



-- 67

estimates. Both the pulse pair and DFT based estimators have

been considered. The effect of phase jitter on post clutter

rejection filtering signal to clutter ratio has also been

analyzed. Finally a procedure for measuring the phase

stability of a radar system has been proposed.



CHAPTER III

SPECTRUM SKEWNESS EFFECTS

ON PULSE PAIR ESTIMATION

Introduction

The pulse pair estimator calculates the first two

moments of the Doppler spectrum from estimates of the complex

autocorrelation function at lag Ts. Goodness of this

estimator is typically determined by examination of the bias

and the variance of the moment estimates. To analyze the bias

in the pulse pair estimates, consider the process

autocorrelation function R(Ts) expressed in terms of the true

mean Doppler frequency fd [28]:

1

2T s

J2_fdTs ; J2_fTsR(Ts) = e S_f)e df

-i (3. I)

2T s

!

where S (f) is the zero-mean representation of the weather

Doppler spectrum. Unbiasedness of pulse pair estimates is

based on the assumption that a spectrum is symmetric or so

narrow that the imaginary part of the integral in (3.1) can

be considered as zero, i.e. [28],
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1

2T s

;Sif)sin(2KfT s) df = 0

-I

2T s

However, the weather return Doppler spectrum is often broad

and not symmetric thus causing a bias. This bias effect is

analyzed here using a skewed Gaussian spectrum model with

various spectrum widths.

Analysis of Bias Errors

In this analysis, a skewed spectrum will be modelled as

piecewise Gaussian with appropriate normalization, given by

2
f

2
2 1 2wi

S (f)= e when f<0

n l+p _w I

2
f

2

2p 1 2w2

Sn(f)= l+p _ e when f>0
w 2

(3.2)

where the standard deviation ratio P=Wl/W 2 defines the degree

of skewness,g, i.e. [37],

3 3

2 2 2

- (p +1) ]



7O

This skew parameter varies proportionally to skew from g=0

for no skew (p=l) to larger values, e.g., g=3.14 for a case

which may be considered large skew (p=10) . Figure 24 shows

the relationship between the parameter, p and the degree of

skewness, g. For a narrow Gaussian spectrum with symmetry,

i.e., Wl=W2=W, the integral in the autocorrelation function

(3.1) can be reduced to one simple term, exp(-2K2w2Ts2), but

the results for the skewed spectrum model will include both a

real term

1

2T s

222

2 1 -2E wiT s

a: _ S n (f) cos (2;CfTs) df = l+----p (_-e

1

2T s

222

W 2 -2_ w2T s

+ -----e )
2w I

and an imaginary term

?

2T s
?

2 i" 1 "_

b=-- J [ (e
l+p

o w I

2
f

2

2w 1

- e ) ] sin (2_fT) df
S

Using these terms, the bias in the pulse pair mean and width

estimates can be represented by
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mean bias=

width bias=

2_-_s an-l(bl - fm

in -W

(3.3)

where true mean, fm and true width, W are described from

Equation (3.2) as

1
2Ts

fro= ;fSn(f) df=

1

2T s

2 1

(PW 2.w l)

1

2Ts

2 _ 2 1 2 2 2

W = J(f-fm ) Sn (f) df= l--_p (wI+PW2)-fro
1

2T s

Estimate biases as given by Equation (3.3) are plotted as

functions of the true width W and the skewness parameter g in

Figures 25 and 26. In Figure 25 if there is no skew (g=0) %he

pulse pair estimator is unbiased. As skew is increased there

is a sharp increase in the bias. Once the skew parameter g>0,

the percentage bias error is essentially independent of the

specific value of skew but is strongly related to the

spectrum width W. As seen, the bias error due to skewness is

not negligible if the spectrum is broad. Figure 26 shows that
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a broad spectrum with a large degree of skewness can degrade

the quality of pulse pair width estimates, but it does not

seem to be as serious compared to the pulse pair mean

estimate error in Figure 25.

To get a more complete measure of the effect of skewness

on the pulse pair mean estimate, Figure 27 compares the

estimate r.m.s, error for the case of the skewed spectrum

with that of a symmetric Gaussian spectrum having an

equivalent width. As seen from Figure 27, the error caused by

the skewness may seriously degrade the pulse pair estimation

quality if the return Doppler spectrum width is 40% or more

of the Nyquist bandwidth.

Poly-pulse pair Method

Since the pulse pair mean estimator bias is sensitive to

skew, an alternative may be desirable. Therefore the poly-

pulse pair method [38] is investigated here as a possible way

of minimizing such errors. The pulse pair mean estimator

algorithm uses the first lag of the complex autocorrelation

estimate and is based on a linear approximation to the

derivative of the phase function of the complex

autocorrelation estimate, i.e.,

A /k

= i dS_s)i = i 8_s)
2_ dT s Ts=0 2g T s



76

2 2

SD(fTs)) +M(T B)
S

.

I.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

0.03 0.08 0.13 0.18 0.23 0.28

WT
S

R.M.S. Error of Skewed Spectrum

R.M.S. Error (standard deviation) of

Symmetric Spectrum with Equivalent width

Figure 27. R.M.S. Error of Skewed Gaussian Spectrum
for a Certain Degree of Skewness (g=1.99)
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A

where @_fs) is the phase function. There will be no

approximation error for a symmetric spectrum, but a large

A

error can occur in a skewed spectrum since 0_s) is no longer

a linear function of T s An alternative which may reduce

A

these errors is to approximate 8_s) as a low order polynomial

(greater than first order, n=l), i.e.,

e _s) -- aiTs

i=l, odd

(3.4)

where 8(Ts) is an odd function of T s [8]. An odd function

representation is needed since R(Ts) is the Fourier transform

of a real valued spectrum. Then the mean estimate of a skewed

spectrum will be

^

1 dO_) I = 1 ^
-- a 12K dT s Ts=0 2_

TO estimate a 1 for a particular n>l, the complex

autocorrelation function must be estimated for lags other

than the first lag value T s. This can be accomplished with

the poly-pulse-pair method [38]. Figure 28 shows that the

mean bias error for a spectrum skew of g=1.99 (p=2) can be

significantly reduced over a range of spectrum widths using

the poly-pulse-pair method. To more completely evaluate the

poly-pulse-pair method the variance of these estimates should

be compared to the conventional pulse pair method (n=l) .
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Considering a third order polynomial model in Equation (3.4),

i.e.,

A A 3 A

O(T_) = a3T _ + alT _

the poly-pulse-pair mean estimate variance can be shown to be

var' (f) = var (f) E a3al-a3al a3-a3
2_ 2 4K 2

A

where vat(f) is the variance of the conventional pulse pair

method. The first term may be positlve or negative and the

second term will actually reduce the pulse pair estimate

variance. In any case, since the pulse interval T s is

generally very small, the higher order terms may be ignored

to yield

A A

var' (f) ---var(f)

From these results, it appears that the poly-pulse-pair

method can improve the quality of mean estimates by reducing

bias errors in a skewed spectrum.

Mode versus Mean Estimation

In the pulse Doppler radar signal processor, when

estimating the "average" windspeed in a given range cell,

there may be a question as to whether "average" should be the

statistical mean or the statistical mode (most probable
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value). The pulse pair algorithm will estimate the

statistical mean. In the symmetric case the mean and the mode

are the same. However, with skewness in the spectrum this is

not true as seen in Figure 29 which shows that these two

values can differ very largely due to the increased skewness

and spectrum width. Figure 30 illustrates the difference

between the mode of the skewed spectrum and the pulse pair

mean as a function of skew and spectrum width. As the

spectrum width increases, this difference is more sensitive

to spectrum skew. Therefore, the pulse pair mean estimate

tends not to be a good mode estimator for broad spectra. The

idea of a mode estimator is developed further in Chapter V. A

new approach of characterizing a summary statistic of

windspeed within a range cell is presented using a classical

harmonic decomposition technique. This indicates potential

for overcoming the biased mean estimation problem with a

skewed spectrum.
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CHAPTER IV

THE MEASUREMENT OF WINDSPEED GRADIENT

WITH LOW PRF RADAR

Int roduct ion

A satisfactory airborne radar sensor for the detection

of windshear must possess good ranging capability, both in

terms of maximum useable range and range resolution.

Otherwise the look ahead range will be too short to provide

adequate lead time warning of a windshear condition or a

hazardous windshear will not be resolved. This suggests a low

to medium PRF radar. On the other hand, a capability for

unambiguously measuring large Doppler frequencies associated

with high windspeed conditions would normally require a

higher PRF radar. With adequate range resolution capability,

one approach to estimating the change in windspeed throughout

a region is to use the difference in mean Doppler from range

cell to range cell as a first order estimate of the spatial

wind velocity gradient. With this approach, it may not be

necessary to estimate large absolute windspeeds in any

particular range cell, but only the difference in average

windspeeds between range cells, i.e., the windspeed gradient.

The magnitude of the windspeed gradient determined from

adjacent range cells should be substantially less than the

absolute mean windspeed in any given range cell, even for

high turbulence environments.
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Thus, it appears that it may be possible to relax the

PRF requirement for large unambiguous Doppler measurement,

allowing a lower PRF to be used to measure the windspeed

gradient. This would inherently allow good ranging capability

without compromising the value of the system for detecting

windshear. The discussion which follows develops this premise

by illustrating the effect of measuring Doppler difference

frequency with a reduced PRF. Simulated I and Q data are used

to investigate the validity of this technique. It is

anticipated that many hazardous windshear conditions can be

detected with a reduced PRF if this technique is indeed

proved to be valid. Relatively simple modification of the

signal processing associated with conventional weather radar

operating at reduced PRF could enable implementation of the

technique.

Aliasinq Effect

With a given PRF, unambiguous Doppler measurement is

possible within a ±0.5 PRF range of frequencies. In

meteorological measurements where a much wider range of

Doppler return frequencies is likely when high windspeed

conditions exist, the radar return Doppler which exceeds the

PRF/2 magnitude is aliased as a lower frequency. Thus, for

highly turbulent conditions where the spread of Doppler

frequencies is very high and significant aliasing can take

place, the ratio of the peak magnitude of the return at the

"mean" Doppler frequency to the level of the return at other
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frequencies may be significantly degraded by aliasing.

Obviously, reducing the PRF would further degrade this

"signal-to-noise" ratio and may reduce the ability to locate

the peak magnitude of the estimated spectrum of the return.

Of course a reduced PRF directly reduces the signal-to-noise

ratio in a given range cell simply because for a fixed

observation time the number of signal returns is reduced.

Of perhaps even more significance is the effect of

aliasing on the measurement of spectral width of the Doppler

return. If the reduced PRF Nyquist interval is inadequate to

unambiguously represent the breadth of Doppler frequencies

present, there can be no way of estimating this width.

Coupled with a reduced signal-to-noise ratio, the ability to

detect turbulent windspeed conditions within a range cell

with reduced PRF radar appears futile. However, the utility

of low PRF in measuring large scale windspeed gradients

between range cells may not be so limited.

To evaluate the effect of aliasing, two different

scenarios will be examined. In each situation an assumed

return with a postulated spectrum will be represented as an

I/Q data sequence. This sequence will be examined with DFT

processing at a rate associated with a high PRF weather radar

processor. The sequence will then be decimated and

reprocessed at a rate which would correspond to a reduced

PRF. The decimation process not only reduces the number of

data samples, but also produces the same data that would have

been obtained had a reduced PRF radar been employed.
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The first situation includes analysis of a pure complex

sinusoid with no added noise. The complex sinusoid represents

a specular signal with a one-sided bandwidth. Aliasing with a

sinusoid signal does not affect the signal-to-noise ratio but

only the frequency estimate of the sinusoid itself. The

second situation examined involves an analysis of a simulated

weather signal which has a Gaussian frequency spectrum

typical of weather returns. This particular type signal is

degraded by aliasing quite dramatically when considering the

reduced PRF system. However, a useful range of mean Doppler

difference can be preserved within the available sampling

bandwidth.

Analysis of a Pure Sinusoid

Consider a situation corresponding to a noiseless

specular pulse Doppler radar return present in two adjacent

range cells. Fourier analysis of a record of sampled values

will yield a spectral estimate which is corrupted by spectral

leakage associated with the limited observation record and

aliasing associated with the limited sampling rate [39]. In

the radar situation the data record is limited by the

observation time within a range cell and the sampling rate is

just the PRF. Using the complex Discrete Fourier Transform

(DFT), two complex sinusoids with a difference frequency less

than the unambiguous processing frequency range (Nyquist

bandwidth) have been analyzed. Using a sampling frequency

(PRF) of 250 Hz, Figure 31 illustrates the difference in the
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magnitude of a DFT processed sinusoid at 500 Hz which aliased

to 0 Hz and a 425 Hz sinusoid which aliased to -75 Hz. Even

though both of these signals are undersampled and the

original frequencies are not preserved, the difference

frequency between the two sinusoids is clearly evident.

Theoretically, the aliasing effect on a pure sinusoid

does not deteriorate the signal-to-noise ratio. It only

relocates the peak and prevents unambiguous identification of

the actual frequency. However, with spectral leakage

associated with the DFT, there is some deterioration of

signal-to-noise ratio in the sense that the leakage power is

aliased within the processing bandwidth, resulting in a

reduced peak to leakage power ratio. This leakage power is

effectively cancelled out in the difference processing

associated with Figure 31. As a result, any frequency

difference which is less in magnitude than one-half the PRF

is preserved and can be detected and estimated as the

frequency difference between the positive peak and the

negative peak.

Based upon this analysis it appears that if the radar

return from adjacent range cells is specular the Doppler

difference is preserved and easily recognized even though an

absolute Doppler measurement is lost through aliasing. Of

course, these signals are not representative of weather radar

returns in turbulent wind environments. These signals have

been used simply to illustrate the concept. The next section
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begins a discussion of this

representative Doppler spectra.

approach using

Analysis of a Simulated Weather Signal

Power Spectrum Simulation and

Generation of I and O Data

A Gaussian power spectrum can be represented by

more

2

1 - (fk -fro)

Gk--2__(exp[ 2(_2 ]

G k is a spectral coefficient corresponding to fk; fm and _ are

the desired mean frequency and standard deviation

respectively. The frequency dependent signal power density

can now be defined as Sk=C-G k where C is a signal-to-noise

power scaling constant given by

(SNR/10)
I0

C = _Gk

where SNR is the signal-to-noise ratio in dB. Defining the

receiver's white noise power per discrete frequency, Nk, as

the reciprocal of the number of spectral coefficients,

i.e. (_Nk=l), the power spectrum can be given by

Pk=-in (Xk) • (Sk+N k)
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where Xk is a uniformly distributed random variable over the

interval (0,i) . For this simulation, normalization is

performed in the frequency domain with Pkn=Pk/Pt • In order to

transform the power spectrum into the time domain, the real

and imaginary components of spectrum were obtained from

Ak=PknCOS(2KYk), Bk=PknSin(2_Yk)

where Yk is a uniformly distributed random variable over the

interval(0,1) . From these, we can obtain the in-phase and

quadrature components through

I (i) +jQ (i) =_ (Ak+JBk) exp (j2_ki/m)
k=l

where m should be larger than 30 to avoid any aliasing in the

time domain [40].

In this particular spectral model the peak of the

spectrum represents the strongest Doppler return from within

the range cell and is interpreted as the mean windspeed

within that cell. The variance of the Doppler spectrum is a

measure of the distribution of windspeeds within the cell and

will be larger in the presence of turbulence. A less

turbulent condition would have a spectrum which is more

peaked and which more closely resembles the specular

situation discussed in the previous section.
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The investigation here is concerned with the ability to

measure the difference between spectral peaks when these

modelled spectra are subjected to aliasing and differenced.

The next subsection analyzes this further.

Typical Weather Radar Signals

A data record consisting of 1024 sample points of a

representative power spectrum were simulated and I,Q data

were obtained from that power spectrum. The simulated signals

are assumed to be obtained with a high PRF radar without any

serious signal aliasing problems. To analyze the effect of

low PRF, one fourth of the simulated signal data were taken

(which means one fourth of the original PRF) and processed

using the DFT in the same way as the complex sinusoids in

Figure 31. Figure 32 is a processed simulated typical weather

radar return signal corresponding to a PRF of 2000 Hz and

Figures 33 through 35 are aliased versions of this type

signal as might be obtained with a low PRF of 500 Hz. A

different mean frequency is associated with each of these

Figures varying from 300 to 475 Hz to illustrate the effects

of peak relocation by aliasing and reduced peak to background

ratio associated with spectral leakage. Various spectrum

magnitude differences are plotted in Figures 36 through 38

with a Nyquist interval associated with the reduced PRF. In

each case the aliased spectral peaks are evident in the

difference with the background level between peaks

effectively cancelled. The original difference between
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spectral mean values is preserved and can be observed as the

frequency difference between the maximum peak magnitude and

the minimum peak magnitude on these plots. In Figure 36 this

difference appears to be between a maximum peak at

approximately -25 Hz and a minimum peak at approximately -200

Hz yielding a difference of 175 Hz which is the difference

between the peaks of the unaliased spectra at 475 Hz and 300

Hz. The ambiguity problem arises in Figure 37 in that the

Nyquist bandwidth is inadequate to represent the mean

difference frequency and this figure shows the peaks of the

aliased spectra at i00 Hz and -I00 Hz corresponding to the

actual peaks at I00 Hz and 400 Hz. The true difference

frequency magnitude is larger than PRF/2, thus it is wrongly

interpreted as a 200 Hz difference. A true frequency

difference of 200 Hz between two aliased peaks at -I00 Hz and

200 Hz is shown in Figure 38.

These examples are intended to represent computed

differences in the spectral estimate of one range cell and

that of an adjacent range cell. It appears that the detection

of mean windspeed changes between adjoining range cells

through low PRF radar is quite possible though signal peaks

are not as well defined as in the case of noiseless signals.

Discussions and Problems

Based upon this analysis it can be readily seen that

reduced PRF introduces aliasing and the peak to background

ratio (SNR) will decrease accordingly, thus circumventing the
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accurate estimation of mean frequency and spectrum width.

Comparison of Figures 32 and 33 shows that the simulated

weather signal of a low PRF radar is more contaminated with

the background noise due to aliasing of high frequency

components.

In spite of this aliasing problem, it appears that the

mean frequency difference between aliased spectra can be

preserved and detected because the peak location of the

Gaussian spectrum is changed in a predictable way and the

broader band incoherent background power level tends to

cancel out. It can be noted that a difference in mean

frequency larger than PRF/2 causes ambiguities. This

demonstration suggests that the DFT magnitude difference of

low PRF radar signals between range cells can overcome the

difficulties of decreased SNR by aliasing and present the

velocity gradient rather clearly.

In evaluating the utility of pulse Doppler weather radar

for detection of windshear from an airborne platform the

motivation for low PRF was stated earlier as a desire for

large unambiguous range capability. Even though the analysis

presented here tends to support the premise that windspeed

gradient can be estimated within the Nyquist bandwidth

associated with low PRF, other problems may be predominant.

Turbulent wind conditions within a range resolution cell can

cause a radar return which has a quite broad spectrum with a

very small mode. Figure 39 illustrates the effect of aliasing

a simulated weather spectrum which does not have a well
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recognized peak. The peak to background level ratio is so low

that the mean of the spectrum can no longer be identified in

Figure 39. As shown in Figure 40 the difference between two

such spectra yields a result which appears useless for

estimating windspeed gradient.

Another consideration with low PRF radar is that the

total magnitude of the return may be small in a turbulent

situation and any reduction in return signal level because of

a limited number of returns in a processing interval will

cause the signal-to-noise ratio to be much too low for any

practical use. Finally, a problem with the use of radar on an

airborne platform in the neighborhood of urban airports is

the clutter environment. High clutter levels may create a

signal to clutter level ratio which precludes the use of a

low PRF. Therefore, even though the analysis presented in

this chapter supports the idea that a reduced Nyquist

interval may be adequate for estimating windspeed gradients

associated with windshear, it should not be concluded that

simply reducing the weather radar PRF is the best means of

improving the ranging capability of a weather radar.
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CHAPTER V

NEW APPROACH IN THE DETECTION OF

HAZARDOUS WINDSHEAR CONDITIONS

Introduction

The aviational hazard often caused by microbursts can

frequently be identified from a Doppler radar return by an S

curve characteristic which describes mean windspeed changes

along the radar range radial. The mean value of the weather

return spectrum is generally considered as representing the

windspeed in each range cell. However, based upon the results

from Chapter III, in the skewed spectrum case or with the

multimodal return spectrum, the modes of spectrum may provide

more reliable information than the statistical mean for the

purpose of windshear detection. Therefore, the mode

estimation technique using the modified Prony method is

presented in this Chapter. Also this mode estimator may be

useful in recognizing the windshear hazard without the need

for clutter rejection filtering.

As has been noted earlier, one of the more popular

methods of estimating mean Doppler or mean wind speed within

a range resolution cell is the pulse pair estimation

technique. This is computationally much more efficient than

DFT based methods although spectrum parameter estimates

involving the DFT are generally considered to be more robust.

With an airborne Doppler radar wet microburst return, where
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signal-to-clutter ratio is large enough, the simple pulse

pair estimator, for example, generally yields a very accurate

estimate of mean wind velocity in each range cell. However,

difficulties arise in a dry microburst case since a very low

signal-to-clutter ratio may seriously bias the mean velocity

estimates without effective and efficient clutter filtering.

To make matters worse, the removal of clutter may not be an

easy task though several methods have proven to be useful

[45],[18],[19]. It has been shown [45] that efficient clutter

suppression can be done using an auto-regressive least

squares method, but mean estimates from clutter-only range

cells often fluctuate randomly, because there remain only

weak background noise signal$ after filtration. This can also

occur when the weather return spectrum falls largely within

the clutter filter notch and is mostly removed with clutter

rejection processing. Another problem is that radar system

phase noise may limit the clutter rejection capability

yielding a too low signal-to-clutter ratio in the filtered

spectrum thus causing an inaccurate estimation of the mean

velocity as explained in Chapter II.

An alternate approach to identifying the presence of a

weather return is to locate strong peak points in the

spectrum which may well represent the velocity spectrum modes

of wind and clutter signals in each range cell. These peak

values may be adequate to identify the microburst S curve

signature and detect a hazardous windshear condition. This

new approach is particularly attractive since it does not
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require processing to estimate the entire spectrum but only

involves finding a few peak points of the spectrum. The

modified Prony method [46] is investigated here to find

strong peak points of simulated weather spectra that include

microburst and static clutter signals.

Modified Prony Method

The modified Prony method [46] involves approximating a

complex data sequence by a model consisting of undamped

complex sinusoids. It is similar to Pisarenko Harmonic

Decomposition (PHD) method [47], but the Prony algorithm is

generally better than PHD procedure since it needs neither

autocorrelation lags nor a more computationally complex eigen

equation solution. The Prony method requires only the

solution of two sets of simultaneous linear equations and a

polynomial rooting. It is summarized briefly in the

following:

I. Find the coefficients of a complex polynomial

minimizing the squared smoothing error.

2. Root a complex polynomial to determine frequencies.

3. Solve for the amplitude of each frequency.

The 2p component Prony model is represented as

n-I_(n)= hkZ k

k=l (5.1)
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where hk=Akexp(jSk) and Zk=exp (j2_fkT) . The polynomial

constructed with roots that are the Z k of Equation (5.1) has

the form

2p
2p-k_(Z) (Z-Z k) = a[k]Z

k=l k=0

where a[0]=l by definition. Due to the unit modulus property

Z k I=Z k , it can be shown that the conjugate property

a[k]=a[2p]a*[2p-k] for k=0 to k=2p must exist between the

coefficients. Therefore, the homogeneous linear difference

equation that has Equation (5.1) as its solution is

a [2p] x [n-p] +_ (a [2p-k] x [n-p+k] +a [2p] a [k] x [n-p+k] )=0 (5.2)

k=l

for 2p+iSn_N, where N is the number of given data points. A

more convenient form of (5.2) can be obtained which yields

the conjugate symmetric :difference equation

x [n-p] + (g2p [k] x [n-p+k] +g2p [k] x [n-p-k] )=0
k=l

where g2p[k]=a[2p-k]/a[2p] and g2p*=a[k] . Since N usually

exceeds the minimum number needed to fit a model of 2p, i.e.,

N_2p+l, the squared smoothing error given by
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N- 2p2p= _ e2p(n)

n=p+l

is minimized based on the measured complex data samples where

e2p(n) =x [n] + (g2p [k] x [n+k] +g2p [k] x [n-k] ) .
k=l

Setting the complex derivatives of P2p with respect to g2p[l]

through g2p[P] to zero yields

[0p]R2pg2p= 2P2p

LO J
(5.3)

where

T

g2p-[g2p[P], • . .,g2p[l],l,g2p[l], • . .,g2p[p] ]

and 0p is a pxl all zero vector. R2p can be expressed as

R2p=_[X;p[n]xT2p[n]+JX2p[n]xH2p[n]J]

n=2p+l

where J is a (2p+l)x(2p+l) reflection matrix and H means

complex conjugate transposition. Here X2p[n] is defined as
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x2PT[n]=[x[n], . . .,x[n-p+l],x[n-p],x[n-p-l], ...,x[n-2p]] .

The fast algorithm to solve the symmetric covariance normal

Equation (5.3) was developed by Marple [48].

After solving for a[l] through a[2p], the roots of the

complex polynomial, Zk, can be obtained using the polynomial

factoring algorithm. Then, hk in Equation (5.1) is computed

minimizing the squared error with respect to each of the hk

parameters, i.e.,

h= [zHz]-IzHx

where

Z_

1 1 ... 1

Z 1 Z 2 • • • Z2p

• • . . • •

• , • • • •

N-I N-I

z 1 Z 2 •..
zN-I

2p m

-hl7

h= h2i'
h2pJ

i m

x[l]

x[2]

X=

x[N]
i m

Performance and Computational Complexity

A second order Prony model was used here to find peak

points of simulated weather spectra. This data set had been

previously analyzed using adaptive clutter rejection

filtering and pulse pair mean estimation [45]. Marple's

programs [46] were slightly modified to avoid numerical ill-

conditioning in some cases. A 512 point complex data sequence

from each range cell was processed. Some typical DFT spectrum
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plots are shown in Figures 41 through 44 with the Prony

method peak estimates also indicated. As seen in Figures

41,42 and 43, the Prony method is able to locate spectrum

peak points. However, Figure 44 shows somewhat inaccurately

estimated peak points because of the presence of strong

clutter power and the closeness of weather and clutter

spectral peaks.

In order to check the usefulness of this new approach

for detection of windshear, data from 40 contiguous range

cells which include a dry microburst with clutter were

processed and peak velocity points were plotted versus range.

The resulting Figure 45 clearly shows %he S curve

characteristic around the range cell 27.

Another important consideration with any algorithm is

computational complexity which must not prohibit real time

processing. Some comparisons with other spectrum estimation

methods are made in Table I. Of course, the Prony method is

compu_ationally much more complicated than other classical

spectrum estimation techniques as the model order increases,

but as it can be seen from Table i, the second order Prony

model used here requires less computation than the DFT

method. Therefore, the modified Prony method may be useful as

a component of a windshear detection algorithm.
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Table I. Comparison of Computational Complexity Where N=512

(f(p) means that the required number of computations depends

on the algorithm used for a polynomial rooting)

method

FFT

AR LSQ

Prony

computation

requirement

Nlog2N

2NP+p 2

2NP+I8p2+p3+f (P)

approximate number

of calculations for a

reasonable model order

4700 complex adds/mults

10500 complex adds/mults

for p=10

2300 complex adds/mults

for p=2



CHAPTERVI

CONCLUSIONSAND RECOMMENDATIONS

FOR FUTUREWORK

Chapter II of this dissertation has presented a method

of evaluating the effect of pulse Doppler radar phase

instabilities (jitter) on the estimation of return signal

Doppler spectrum parameters using the pulse pair and DFT

algorithms. Phase instabilities are modeled as statistically

independent from the radar return itself. This phase jitter

model can in fact represent a cumulative effect from various

sources within the radar transmitter/receiver. As seen from

the results presented, phase jitter is not expected to cause

any bias error in the pulse pair and DFT mean estimates.

However, it can cause an increase in the variance of the mean

estimate and is essentially independent of the radar return

spectrum width. On the other hand it has been confirmed there

is significant increase in the bias of the pulse pair width

estimate particularly with more narrow return Doppler

spectrum widths. Some increase in the variance of the pulse

pair width estimate with increasing phase jitter is also

noted. It is also confirmed on the basis of these results

that the phase jitter effect on pulse pair estimation is

negligible if Ts is small enough and most of phase noise

spectrum power is concentrated around the carrier frequency.
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However, if these conditions are not satisfied, any phase

jitter can cause significant estimation errors.

Comparing the results of DFT estimation with the pulse

pair estimation case, it can be said that DFT estimates are

relatively immune to phase jitter since the DFT estimate

errors are much smaller than the comparable results using

pulse pair estimates. This result may be anticipated because

it is well-known that DFT estimate variances increase much

more slowly, as the normalized spectrum width WTs increases,

than the exponential increase associated with the pulse pair

method. One example was shown using actual phase jitter data

to demonstrate the general approach for evaluating the system

performance with arbitrary phase jitter spectral data.

A significant contribution of this work is the

development of a technique whereby radar phase instability

measurements can actually be incorporated into an analytical

evaluation of pulse pair and DFT estimation quality by using

appropriate numerical techniques. This precludes the

necessity to rely on any particular notion of a closed form

distribution for the phase jitter spectrum. Radar system

phase stability design specifications can now be

quantitatively determined based on the desired quality for

spectrum parameter estimates.

The phase jitter analysis is based upon earlier

published results for pulse pair spectrum parameter estimates

which, in many cases, have been derived through a series of

simplifying assumptions. These assumptions may limit
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application of the results to weather spectra which are

narrow with respect to the Nyquist processing interval and

which are Gaussian, or at least symmetric, as well as

situations where a large signal-to-noise ratio exists. The

pulse pair estimator variance expressions presented here were

derived using perturbation analysis under the assumption that

perturbations are not excessive (for example, a second order

expansion was used in the derivation of (2.11)) [29]. In some

cases this is valid only if the number of samples is very

large, which suggests that a higher order expansion may be

required in the derivation when considering a small number of

samples. Therefore a re-evaluation of the assumptions made in

deriving the error expressions for the pulse pair estimators

may be necessary to be applied in turbulent weather

environments if this work is to be extended further.

One of the assumptions made in evaluating the pulse pair

estimates is that the Doppler return spectrum is symmetric.

This may not be valid particularly in the turbulent weather

situation. The analysis in Chapter III shows that the mean

estimates can be seriously biased due to skewness in the

weather spectrum as the spectrum is broadened even though the

width bias error can be considered to be negligible.

Degradation of estimation quality due to the bias term is

less than 15% if WT s is not larger than 0.15 as seen in

Figure 27, but this condition may not always be satisfied. In

the skewed spectrum case, the suggested poly-pulse pair

method was demonstrated as useful in reducing bias errors of
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mean estimates. It is also shown in Chapter III that the mode

of the skewed spectrum and the pulse pair mean can differ

very largely as the spectrum width increases. This may be a

problem in some applications such as windshear detection

where frequently the mode of a return spectrum may be a more

informative statistic than the mean value.

It is anticipated that windshear can be detected by

measurement of the windspeed gradient. From the results

presented in Chapter IV, it is theoretically possible that

windspeed gradient can be measured with a low PRF radar if

the difference of mean windspeed between range cells is not

larger than (PRF-_)/4. Low PRF does introduce an aliasing

effect which prevents the measurement of high windspeed, but

it is shown that the gradient information, i.e., the mean

frequency difference, can be preserved and detected. The

difficulties of decreased SNR due to aliasing also can be

overcome by using the magnitude difference of return spectra

between range cells. Therefore, Chapter IV demonstrates that

the low PRF radar has a potential for the direct measurement

of windspeed gradient. However, in a practical situation,

this method may have some limitations. A very broad weather

return spectrum can cause meaningless results because of

seriously aliased weather signals. Also the total return

signal power may be very small in dry weather conditions and

a limited number of returns associated with low PRF radar may

cause too low an SNR to be useful. Furthermore, in an

airborne Doppler radar, the high clutter return level is a
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serious problem and may preclude the use of low PRF radar

since efficient clutter filtering is almost essential in

these situations for the detection of windshear phenomena.

A new approach explained in Chapter V shows that

windshear detection may be possible using a pattern

recognition type technique by finding an "S" curve

characteristic demonstrated here using the modified Prony

method. From the results in Figure 45, it can be said that

the very low order Prony model may make it possible to detect

the windshear condition without any other preliminary

processing. However, this new approach also has the

limitation that some valuable weather information such as

spectrum width can not be obtained without additional

processing. Also as shown in Figure 44, where clutter and

weather spectrum modes are very close together,

identification of a weather return is an inherently difficult

problem to solve. In these situations, the Prony method

appears of limited use. Other more computationally

complicated methods such as the Pisarenko harmonic

decomposition method may be necessary.

Future work may include an evaluation of detection and

false alarm rates by applying methods suggested here to data

obtained in planned system flight tests. The thresholding

method with use of the hazard index F-factor is simple, but

it may be more susceptible to the mean velocity measurement

error than the method of recognizing an S curve

characteristic associated with microbursts. This pattern
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recognition type technique may help eventually to build a

more intelligent system for reliable windshear detection

since typical microburst S curve signature information can be

accumulated and stored for future reference in a correlation

based detection processor.
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Rederivation of DFT Estimate Variances

with Gaussian Phase Noise

Theoretical expressions for the variances of mean and

width frequency estimate derived by Berger and Groginsky can

be found in [33]. From these equations, the variance

expressions for a narrow Gaussian spectrum without

consideration of phase noise are given in [30], but

rederivation should be made to analyze the phase noise

effect. Therefore the autocorrelation function with phase

noise derived in [49] can be rewritten as a series expansion

form to obtain the return spectrum S(f), i.e.,

n

_2a 2 _2_2w2_2 _ (2R@ (_))R(_) = Se e + N6
n! _,0

where R_(_) represents _ne _tocorrelation function of the

phase noise model, _ _ With the assumption of Gaussian

phase noise the spectrum can be easily obtained by Fourier

transform. Ignoring negligible higher order terms, the

spectrum can be approximated very accurately as
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where NT s represents a white noise power within the Nyquist

bandwidth. By substituting this spectrum into the equations

given in [33], the variance expressions including Gaussian

phase noise are derived as
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NASA Simulation Parameters

****SIMULATION PARAMETERS*****

A/C Distance to Touchdown (km)

Aircraft Velocity (kts)

Glideslope Angle (deg)

No. of Complete Scans

Time Between Scans

Roll Attitude (deg)

Pitch Attitude (deg)

Yaw Attitude (deg)

Az Integration Range/2 (deg)

Az Integration Increment (deg)

E1 Integration Range/2 (deg)

E1 Integration Increment (deg)

Rng Integration Increment (m)

Random Number Seed (0-i)

Runway Number

Right (i) or Left (2)

****MICROBURST & CLUTTER******

Along Track Offset from TD (km)

Cross Track Offset from TD (km)

Rain Standard Deviation (m/s)

Clutter Standard Deviation (m/s)

Clutter Calc. Flag (I=ON,0=OFF)

Discrete Calc. Flag (I=ON,0=OFF)

Reflectivity Calc. Thres. (dBz)

Minimum Reflectivity (dBz)

Attenuation Code (0,1,2)

****RADAR PARAMETERS**********

Initial Radar Range (km)

Number of Range Cells

Antenna Az - if no scan (deg)

Azimuth Scan Range/2 (deg)

Azimuth Scan Increment (deg)

Antenna Elevation (deg)

Transmitted Power (watts)

Frequency (GHz)

Pulse Width (microsecs)

Pulse Interval (microsecs)

Receiver Noise Figure (dB)

Receiver Losses (db)

Antenna Type (I ,2 , or 3)

io

0.

7.

150.0

3

1

5

0

0

0

6O

.3

4.0

.2

I00.

.224

26.

i.

0.

,

0.

--2.

0.

i.

o5

i.

0.

-20.

-15.

2.

0.

o

0.

i.

40.

0.

0.

3.

i.

2000.

9.3

i.

268.6

4.

3.

I.
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Antenna Radius (m)
Aperture Taper Parameter
RMSTrans. Phase Jitter (deg)
RMS Trans. Freq Jitter (Hz)

****SIGNAL PROCESSING*********

Number of Pulses
Number of A/D bits
AGC Gain Factor
Processing Threshold (dB)
Clutter Filter Code (-2 to N)
Clut%er Filter Cutoff (m/s)
No. of Bins for F-factor Avr.

.381

.316

.2

0.

0.

°

0.

512.

12.

.6

4.

0.

3.

5.
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